Turbo Setups

Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
Turbo Resouce Guide By: MatT3T4



Notice: The purpose of this guide is to help those new to turbocharging choose the correct setup for their goals. In no way is this the perfect guide for everyone, however, it will help you figure out what the best setup is for you. The parts I have specified are important, but not all of them are definitely needed, although I would recommend trying to get them all. The products that I have recommended are of my own liking, and you do not necessarily have to buy that product from the company I mentioned. This guide is here to help you...but if you abuse your motor, or leave it untuned, you will suffer the consequences, and you are on your own. Happy boosting!



MatT3T4 RECOMMENDED TURBO SETUPS

STAGE I: The Daily Driver
~Light buildup, daily driveability/reliability, inexpensive, occasional racer, mostly street legal.
--Civic SOHC; VTEC & non-VTEC

Turbocharger
>GReddy turbo kit
>GReddy intercooler kit: small one
>GReddy Type-S blow off valve

Ignition
>MSD 6A
>MSD Blaster 3 Coil
>MSD Pro Cap
>NGK Blue Wires

Fuel
>Holley 255LPH In Tank Fuel Pump
>B&M Command Flo

Exhaust
>GReddy EVO
>Random Technology Hi-Flow Cat

Bolt-Ons
>AEM cam gear

Tuning
>A'pex V-AFC: for VTEC
>A'pex S-AFC: for non-VTEC
>GReddy 2mm Metal Head Gasket

Gauges/Electronics
>GReddy boost gauge
>GReddy air:fuel meter
>GReddy oil pressure gauge
>GReddy turbo timer
>GReddy Profec A or B boost controller

---E.T.A.---
Quarter mile times can drop to as low as low 13's depending on your setup. Good tuning, ample fuel & spark, with race gas, and about 14psi will net you 13's. Safe street driving with this setup well tuned should be around 10psi or less.
__________________________________________________



STAGE II: The V8 Killer
~Serious about being fast on the street, looking for at least 12 second runs. Does not care about street legality, reliability is still good, but must be cared for excellently.
--SOHC & DOHC HA Cars; VTEC & non-VTEC

Turbocharger
>Rev Hard Stage II; DRAG Gen III; F-MAX

Ignition
>MSD 6AL
>MSD Blaster 3 Coil
>MSD Pro Cap
>Aramaki wires

Fuel
>Holley 255LPH In Tank Fuel Pump
>AEM fuel rail w/ fuel pressure riser
>RC 370cc-440cc injectors

Exhaust
>Thermal R&D 3"

Bolt-Ons
>AEM cam gears
>ITR or Skunk2 intake manifold
>RC ported throttle body
>Web Cams; or some other sort of turbo cam

Tuning
>DFI, Hondata, PMS, etc.
>InLinePro head gasket

Gauges/Electronics
>GReddy boost gauge
>GReddy air:fuel meter
>GReddy EGT gauge
>GReddy oil pressure gauge
>GReddy turbo timer
>GReddy Profec A or B boost controller

Clutch
>Clutchmasters; ACT; Clutch Specialties; etc...

---E.T.A.---
Easy low 12's, maybe even high 11's depending on your tuning, and the size of your cajones. Safe daily driving boost setting should be around 10psi with good tuning, and track spec, with race gas, can be anywhere from 15-19psi or so.
__________________________________________________



Stage III: I AM GOD!
~You do not give a crap about laws, you have a fat wallet, and reliability is for the weak! You want to DRAG RACE. You don't care about twisties, and you don't care about cops. You want to own everyone!
--SOHC & DOHC HA Cars; VTEC & non-VTEC

Turbocharger
>Rev Hard Stage III; Custom

Ignition
>MSD 7AL
>MSD Blaster 3 Coil
>MSD Pro Cap
>Aramaki wires

Fuel
>Holley 255LPH In Tank Fuel Pump
>AEM fuel rail w/ fuel pressure riser
>RC 550cc+ injectors

Exhaust
>Thermal R&D 3"; or just downpipe

Bolt-Ons
>AEM cam gears
>sheet-metal intake manifold
>RC ported 70mm throttle body
>Web Cams; or some other sort of turbo cam

Internals
>JE Pistons
>Total Seal rings
>CROWER rods
>Bensons sleeves
>micropolished crank
>ARP rod bolts & head studs
>Bensons port/polish head
>Crower valvetrain (springs/retainers/valves)

Tuning
>Accel DFI; Haltech; Motec

Gauges/Electronics
>GReddy boost gauge
>GReddy air:fuel meter
>GReddy EGT gauge
>GReddy oil pressure gauge
>GReddy fuel pressure gauge
>GReddy turbo timer
>GReddy Profec A or B boost controller

Clutch
>Clutchmasters; ACT; Clutch Specialties; etc...

Limited Slip Differential
>Quaife; KAAZ; JDM ITR tranny
 

Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
TURBO PARTS: Compliments of texan.

Compressor Section:
The compressor section is identical in function to any centrifugal supercharger, the only difference is that the turbine section of the turbo drives it. One thing to know is that turbocharger compressor sections are (generally) significantly smaller than their supercharger cousins. This all has to do with efficiency and the chosen method of powering the compressor, so just know it's the reason why you see turbochargers spinning such high RPM when compared to their centrifugal supercharger cousins. It's all about necessity.

Turbine Section:
This section bears a strong resemblance to the compressor section for a reason; it basically functions the same but backwards. The two main parts are the turbine housing and turbine wheel, and if this is an internally wastegated turbo, the wastegate also resides here (there will be more on that later). As exhaust gasses quickly move out of the cylinder and into the exhaust manifold, they are routed into the turbine housing's scroll. If you understood the flow of air through the centrifugal compressor design discussed earlier, here it's just the opposite occurring. As the hot and rapidly moving gasses attempt to find an airflow path through the turbine housing (with the ever decreasing scroll area), they come in contact with the turbine wheel on their way to the center outlet of the housing. As they rush through this airflow path and into the exhaust downpipe, they spin the turbine wheel, imparting a portion of their kinetic energy to the turbocharger. Especially notice that with this design comes variable RPM, the turbocharger itself is not physically strapped to any rotating part of the engine. This makes many different turbo shaft speeds possible at a single engine RPM, which is where the system's basic performance characteristics and tunability are born.

Center Section (aka bearing section):
The center section is definitely the most complex of the three portions. This is what connects both the compressor and turbine sections, and where all of the cooling and lubrication of the unit occurs. Inside the center section is the main shaft, which is what the compressor and turbine wheels are directly connected to. This main shaft undergoes a great deal of pressure, RPM and heat, so the center section is unsurprisingly very specifically engineered to deal with these. The most common and basic center sections use what's called thrust bearings to keep the shaft spinning, and oil flow from the engine to both lubricate and cool the unit. Two common updates to this proven design are becoming more affordable and widespread; ball bearing center sections and water cooling in addition to oil. The ball bearing center is both more durable and more efficient at transmitting power to the compressor wheel, making it better for performance and longetivity. The water cooling is more for reliability than anything else, helping to stabilize temperatures and prevent oil coking in the housing. Both are worthwhile additions to your turbo purchase if at all possible.

TURBO KIT BASICS:


Although I say "basic" here, know that this is pretty much an oxymoron when dealing with turbos. There is nothing basic about a turbo system, as many different things concerning engine operation need to be addressed. The basic turbo system should come with a bunch of different things, and few systems effectively address all these unless your car was originally equipped with the system. Here they are, in no particular order (with the little things like vacuum line omitted), and notice I left out engine management from the list, because I want to deal with that separately:

1- turbo
2- exhaust manifold for turbo
3- wastegate
4- blow-off valve (aka bypass valve)
5- lines for oil supply and return
6- intercooler

Turbocharger:


We've already gone through the basic explanation, but one more thing bears mention here. Ever hear the T25, T3/T4, T04E turbo designations? Well, these refer to the size and basic flow potential of the turbocharger. Garret and other manufacturers created turbo families, ones in which all members prescribed to certain physical characteristics. A T3 compressor section is one that prescribes to a specific characteristic set, such as overall size and design features. Generally speaking, larger numbers and higher letters mean a larger (and sometimes newer) family of turbos, meaning a potential increase in flow ability, power production and possibly even efficiency. The T3/T4 designation is an example of a hybrid turbo; one where a T3 turbine section has been mated to a T4 compressor section. This popular hybrid attempts to combine the excellent low RPM spool characteristics of the smaller T3 class turbo with the big flow potential of a sizable T4 compressor. Really it's a "best of both worlds" attempt, which seems to be very successful on smaller displacement, high RPM engines. Now there are a few other considerations to turbo sizing, such as A/R ratio and wheel trim, but I won't go into those unless someone really needs to know everything. The point here is simply to get a basic feel for turbo function and sizing, as the experts who designed the turbo kit or upgrade likely have already made an excellent choice in turbo size for your specific application.

Turbo Exhaust Manifold:


In order to mount the turbo to the engine, the first step is to route exhaust gasses through it. This is where the special manifold comes in,
dumping exhaust gasses directly into the turbine housing (provisions for mounting an external wastegate should also be found here). Usually these are fairly crude looking log style cast iron manifolds, instead of the nicely shaped and finished stainless steel header piping. But there's good reason that virtually every car to come off the production lines with a turbo follows this example: it works.

Turbos build up a tremendous amount of heat and pressure in the initial part of the exhaust system, and the thick cast iron manifolds are perfectly suited to reliable performance in this environment. Also, space considerations often prohibit the use of nicely tuned tubular exhaust primaries, so there's little reason to go to the expense of crafting them. The point here is this: there are possibly some finely crafted tubular manifolds available for your application if you want maximum performance and don't mind the extra money, but these are largely unnecessary for a typical street setup. Ugly cast iron manifolds are routinely found on 400-500hp cars.

Wastegate:


In the most basic of terms, a turbo system is self-feeding. That is, as the system creates more boost, it also creates more exhaust flow. This exhaust flow is what powers the turbocharger, so if left unchecked the turbo system will quickly spiral out of control. Now it takes time and a specific amount exhaust flow to start creating boost, but once this point is reached (called boost threshold), either exhaust flow to the turbine is regulated, or the system keeps building pressure until something gives, usually a hard part in the engine. Which is where the wastegate comes in.

Controlled by vacuum signal from the manifold (or more correctly, positive pressure in the manifold), the wastegate's job is to re-route exhaust flow around the turbine wheel to control boost levels. Remember, the turbo creates boost by extracting energy from exhaust gas flow, so this is the prime location to regulate turbocharger RPM, and therefore boost levels. What a wastegate does is provide an alternate path for exhaust gasses to flow through that doesn't cause them to contact the turbine wheel. This prevents the exhaust gasses from contributing to boost production, thus regulating boost to preset levels.

There are also two main types of wastegates, internal & external. Both are there to perform the same task, the only difference is location and effectiveness. Internal wastegates are located inside the turbine housing itself, and although effective at re-routing exhaust gasses around the turbine wheel, they can impart a good bit of turbulence to the exhaust flow path. This increases exhaust system pressure and hurts performance. The external wastegate, the true performance choice, has provisions made for it's mounting before the turbo on the exhaust manifold. An entirely alternate flow path is created where exhaust gasses skip going through the turbine housing altogether, contributing much less to turbulence in the system. They also tend to be more accurate at controlling exhaust flow and turbo boost; combine these two attributes and you have a recipe for superior performance.

Blow-Off Valve:


This is both the insurance policy of the turbo system, and it's protector. Two things are governed by the blow-off valve; maximum boost levels and pressure spikes in the intake tract. While the first job is primarily handled by the wastegate, in the event of a big enough overboost, the blow-off valve will vent excess pressures to help maintain safe levels of boost. Basically, the blow-off valve is a springloaded poppet valve contraption that will bleed off and excess pressure that builds up in the intake system. This can occur due to either boost creep or a sudden closing of the throttle body when boosting (such as during full throttle, high RPM shifts), but either way it's the blow-off valve's job to prevent pressure spikes in the intake tract. This serves two functions: one, to prevent serious engine damaging overboosts, and two, to prevent airflow from reversing direction into the turbocharger itself. The second one is it's principle job, to keep the intake tract from building up large pressures during sudden lift throttle situations (such as shifting).
 


Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
When the engine is at full boost and full song, the turbo is spinning madly to supply air to the intake system. The momentum of air and turbocharger are not easily stopped on a dime, so when the throttle body is suddenly slam shut, things tend to get interesting in the intake system. There is an immediate pressure spike between the turbo and throttle body, putting great stress on the compressor wheel which is still trying to pump air into a closed system. To keep the turbo's RPM up and the pressures in the intake tract down, the blow-off valve vents this excess pressure for maximum performance and reliability.

Intercooler:


This is the most important performance part you can add to a forced induction system, and is well worth its price if boost numbers rise beyond 8 psi. Compression equals heat, and blowing hot air into the engine is neither efficient or reliable. An 8 psi forced induction system can produce air inlet temps over 200 degrees farenheit, making the engine a detonation machine. The greater amount of space between the air molecules also lowers charge air density, meaning the 8 psi of air isn't as potent as it could be. The solution lies in cooling the air charge before it enters the engine, and that's precisely what the intercooler does. Two types of these are in production, air-to-air and air-to-water intercoolers. Air to air intercoolers are inexpensive and easy to maintain, but they can be very large and must be in a good airflow path to be effective. They are also rarely over 80% efficient, meaning the charge temps only get to within 80% of ambient during engine operation. Air to water systems are more compact but also more complex,their biggest advantages lie in placement freedom and efficiency. An air to water intercooler does not need a supply of fresh air and can be well over 100% efficient (when filled with a cooler than ambient liquid), but they do need an external reservoir of coolant and some means to extract heat from that coolant. Traditionally, air to air units are preferred for simplicity, reliability and effectiveness in street cars, while the superior cooling and placement possibilities of air to water systems are most at home in drag vehicles (or ones that only see occasional boosting, where heat soak isn't an issue). There are of course exceptions, and in fact the Jaguar XJR uses air to water intercoolers, but these are few and far between. At any rate, either system is universally a good thing if you plan on running even moderate levels of boost.

Oil Supply:

A lot of people pass this part up when explaining a turbo system, and yet it's one of the main things you will have to deal with on any turbo install. The turbo needs both a supply and return line, where the supply line is generally in the form of a sandwich adapter mounted between the oil filter and engine block. The return line is usually the pain in the ass, since the oil pan of the engine needs to be removed and fitted with provisions for this line to connect to. Some aftermarket oil pans have NPT bungs on them ready for this type of use; I highly recommend you think about buying one of these (which is always a good investment even without the turbo) if you are planning on a serious turbo buildup.

When Good Things Turn Bad...

In the unlikely event that you suffer engine damage, you can use this guide to troubleshoot your misfortune. The engine blow diagnostic is not based upon a perfect system, as there could be many reasons behind the failure, but these are some of the most common.

ENGINE BLOW DIAGNOSTIC

- blue smoke: Oil burning. Possible piston ring failure, wear and tear. It is possible that your pistons are chipped due to running lean. Could also be the valve guide seals. For the most part, blue smoke on acceleration is due to pistons/rings; and blue smoke on deceleration (downshifting) is due to valve guide seals.

- white smoke: Water/Coolant entering into the combustion chamner. This could be caused a many things such as a cracked head gasket, cracked block or head, etc...

- milky coolant: Cracked head gasket, cracked block or head.

- severe knocking in motor: Spun rod bearing. Car will most likely stall out. Oil light will probably come on, and reservoir around oil cap and/or breather will be leaking oil. There may be some blue smoke as well, and possible oil spatter on rear of car from exhaust pipe. Will most likely be somewhat quiet at idle, but will knock hard under throttle.

HOME COMPRESSION TEST

Think you messed something up? Think you may have lost compression in one of your cylinders? Well, there is one easy way to tell without having to drive to your mechanic to get a compression test. Do as follows:

1- Turn on ignition and start motor.

2- Let the car idle until warm, and have a steady idle.

3- Starting with cylinder 4 on the left side of the motor, pull out each spark plug wire one by one, and listen for idle drop. Replace spark plug wire before testing next.

What should happen is the following:

1- If your motor is alright, when you pull out the spark plug wire in each cylinder, the idle should drop significantly.

2- If the motor is damaged, and one or two cylinders in particular are the culprit, when you pull out that spark plug wire from that cylinder, the idle will NOT change, but it will remain constant, and that means that you are NOT getting compression in that cyldiner, and that is the root of the problem.

If you try this, and the idle drops each time, then your bottom end may not be the root of your problem. If it does drop in any particular cylinder, then that cylinder could be cracked, scratched hard, or that piston ring could be burnt beyond belief.
 

Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
Application Guide
This guide applies to Turbonetics turbochargers

DISPLACEMENT COMPRESSOR TRIM TURBINE TRIM TURBINE HSG

60-100 CID ~ T3-50 Trim ~ T3 Standard ~ .36/.48

100-150 CID ~ T3-Super 60 ~ T3 Standard ~ .48/.63

150-200 CID ~ T3-Super 60 ~ T3 Standard ~ .63/.82

200-250 CID ~ T4-S3 Trim ~ T4 “O” Trim ~ .58/.69

250-300 CID ~ T4-V1 Trim ~ T4 “P” Trim ~ .69/.81

300-350 CID ~ T4-V1 Trim ~ T4 “P” Trim ~ .81/.96

350-400 CID ~ T4-H3 Trim ~ T4 ”P” Trim ~ .96/1.30

400-450 CID ~ T4-H3 Trim ~ T4 “P” Trim ~ 1.30

Here is the T3-Super 60 compressor map:


Here is the 60-1 compressor map:


Here is the T04E "57" compressor map:



THINGS TO REMEMBER!
- A turbocharged car is only as nice to you, as you are to it!

- Regualarly scheduled maintenance and great tuning is very important, perhaps the key to turbo motor longevity!

- Street racing is baaaaad, mmm'kay?

- Your boost gauge should read 20-22HG of vacuum at idle. Anything less, and you should check for vacuum or compression leaks.

- Gap your plugs correctly. Most Honda's run better with the plug gap at .030 with stock ignition systems. With upgraded ignition systems, slowly start increasing your gap by .005, when you start to misfire, go back .005. Make sure that you're running 2 ranges colder than stock plugs.

- Sometimes, when you experience hesitation, the problem could be your check valves. If you have already checked your ignition, check the MAP bypass valves. They can wear, and let the MAP see boost, in which case, the motor will hesitate and bog.
 


Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
its not done by me...:nono:..its by Matt3t4 who is not on this board ;)
 

Shiznit

Stickin it to the Man
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
15+ Year Member
20+ Year Member
updated the f/i stickies thread :thumbs up good info blazed
 

Blazed

f**k The Powers That B
Registered VIP
Registered OG
5+ Year Member
10+ Year Member
i posted a few more..very good info IMO...;)
but we need a few more NA threads..maybe if we can keep it civic get a good NA vs Fi thing going :lol:
 


Top